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Kalman Filter
for a scalar:

Now the background error variance is forecasted using the
linear tangent model and its “adjoint”.
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Ensemble Kalman Filter (EnKF)
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Problem left: how to estimate the
analysis error covariance and the
analysis perturbations?
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Local Ensemble Transform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

• Model independent
(black box)
• Obs. assimilated
simultaneously at each
grid point
• 100% parallel: fast
• No adjoint needed
• 4D LETKF extension

(Start with initial ensemble)

LETKFObservation
operator

Model

ensemble  analyses

ensemble forecasts

ensemble
“observations”

Observations



Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

Localization based on observations



Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the
central grid red dot

All observations (purple diamonds)
within the local region are assimilated

Localization based on observations

The LETKF algorithm can be described in a single slide



Local Ensemble Transform Kalman Filter (Local Ensemble Transform Kalman Filter (LETKFLETKF))

Forecast step:
Analysis step: construct

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

Analysis mean in ensemble space:
and add to     to get the analysis ensemble in ensemble space

The new ensemble analyses in model space are the columns of
                 . Gathering the grid point analyses forms the new

global analyses. Note that the the output of the LETKF are analysis
weights         and perturbation analysis matrices of weights        . These
weights multiply the ensemble forecasts.

   
x

n,k

b
= M

n
x

n!1,k

a( )
Xb

= x
1

b ! xb | ... | x
K

b ! xb"# $%;

y
i

b
= H (x

i

b
); Y

n

b
= y

1

b ! yb | ... | y
K

b ! yb"# $%

 

!P
a
= K !1( )I + YbT

R
!1
Y

b"# $%
!1
;W

a
= [(K !1) !Pa ]1/2

X
n

a
= X

n

b
W

a
+ x

b

    w
a
= !P

a
Y

bT
R

!1(y
o
! y

b )

W
a

Globally:

  w
a

W
a



Repeat: Repeat: LETKFLETKF, globally, with notes (4D-LETKF), globally, with notes (4D-LETKF)

Forecast step:

Analysis step: construct
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4D-LETKF is done by simply concatenating in the vertical the
vectors                and matrix          valid at different times in the
assimilation window. The rest is the same.
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Repeat: LETKFRepeat: LETKF, locally, with notes, locally, with notes
Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

Analysis mean in ensemble space:
and add to     to get the analysis ensemble in ensemble space

The new ensemble analyses in model space are the columns of
                 . Gathering the grid point analyses forms the new

global analyses. Note that the the output of the LETKF are analysis
weights         and perturbation analysis matrices of weights        . These
weights multiply the ensemble forecasts.
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The 4D-LETKF produces an analysis in terms of
weights of the ensemble forecast members at the
analysis time tn, giving the trajectory that best fits all
the observations in the assimilation window.

analysis time weightsImplication of getting analysis weights



The 4D-LETKF produces an analysis in terms of
weights of the ensemble forecast members at the
analysis time tn, giving the trajectory that best fits all
the observations in the assimilation window.

analysis time weights
A linear comb. of trajectories is ~a trajectory. If it is close
to the truth at the end it should be close to the truth
throughout the trajectory (neglecting model errors).



No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
 Outer loop (like in 4D-Var)
 “Running in place” (faster spin-up)
 Use of future data in reanalysis
 Ability to use longer windows



No-cost LETKF smoother
tested on a QG model: It works!

“Smoother” reanalysis
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This very simple smoother allows us to go back
and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis



Example: forecast sensitivity to observations
Liu, Hong and Kalnay, in preparation

The only difference between         and            is the assimilation of observations at 00hr.

 Observation impact on the reduction of forecast error:

(Adapted from Langland
and Baker, 2004)

et |0 = xt |0
f
! xt

a

e
t |0

e
t |!6

!e
2
= (e

t |0

T
e
t |0
" e

t |"6

T
e
t |"6
)

analysis   t

e
t |!6

e
t |0

-6hr 00hr

OBS.



Example: forecast sensitivity to observations
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This requires the adjoint of the model and of the data
assimilation system (Langland and Baker, 2004)



Example: forecast sensitivity to observations

Langland and Baker (2004):
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Test ability to detect the poor quality observation on
the Lorenz 40 variable model

 Like adjoint method, ensemble sensitivity method can detect the observation
poor quality (11th observation location)

 The ensemble sensitivity method has a stronger signal when the observation has
negative impact on the forecast.

Observation impact from LB (red) and from ensemble sensitivity method (green)

Larger random error Biased observation case



Test ability to detect poor quality observation for
different forecast lengths

 After 2-days the
adjoint has the wrong
sensitivity sign!

 The ensemble
sensitivity method has
a strong signal even
after forecast error has
saturated!

Larger random error Biased observation case

 

 

2 days

5 days

 

20 days



How can we possibly detect bad observations even
after all skill is lost???

 After 20-days there is no
forecast skill but the
ensemble sensitivity still
detects the wrong
observation.

 The ensemble sensitivity
is based on the assumption
that the analysis weights
can be used in the
forecasts. This is accurate
even after forecast error
has saturated (triangles).

 As a result we can
identify a bad observation
even after forecast skill is
lost.

 

20 days

Mean Square Error of the -6hr weighted forecasts (diamonds),
MSE of the 0hr ensemble mean (circles) and MS Difference
between ensemble mean and weighted forecasts (triangles).

Error made by using the -6hr
weights in the forecasts



Summary

• EnKF is simple, does not require linear tangent
model or adjoint of either the model M or the forward
operator H

• There are two types of EnKF: perturbed observations
(e.g., Evensen, Houtekamer), and Square Root Filter
(e.g., Whitaker and Hamill, Anderson, Bishop). These
assimilate one obs at a time.

• The LETKF (Hunt et al.) is a SQRF done locally in
space: the analysis and analysis perturbations are
weighted averages of the ensemble forecasts.

• This makes possible a “no cost smoother”.
• EnKF calculates exactly Pa (the Hessian!), and the

Kalman gain matrix K. This makes possible to
compute longer forecasts sensitivity to observations.


